Fête de la science 2024 : Cathy est ambassadrice Auvergne-Rhône-Alpes

La Fête de la science 2024 est placée sous le thème « Océans de Savoirs » et se tiendra du 4 au 14 Octobre. Et ça tombe bien, un an après le lancement d’OCEANID, Cathy sera ambassadrice pour la région AURA aux côté d’Eric Blayo, enseignant-chercheur en mathématique appliquées à l’Université Grenoble Alpes.

Comme chaque année, l’Observatoire de Lyon propose une série d’animations sur les différents sites.

Arrivée de Maxime Pineau

Maxime Pineau a rejoint e-Planets en ce début Septembre pour un contrat post-doctoral dans le cadre de l’ERC OCEANID.

Maxime a soutenu sa thèse au LPG (Nantes) en 2020, intitulée « Étude des propriétés proche-infrarouge de la silice opaline et de la kaolinite pour interpréter leur origine géologique sur Mars » sous les directions de Benjamin Rondeau et Laëtitia Le Deit, dans le cadre de l’ANR MarsPrime. Par la suite, il a réalisé des enseignements en géologie à l’Université d’Orléans en tant qu’ATER avant de rejoindre l’ANR PaleoSilica en tant que postdoc depuis 2022 jusqu’à cet été 2024.

Maxime étudie la géologie des minéraux d’altération (e.g., silice hydratée, argiles, sulfates, carbonates) sur la planète Mars, mais également sur Terre grâce à l’observation de sites géologiques analogues.

Stages de printemps 2024 à e-Planets

La saison des stages commence, voici un petit aperçu des stages encadrés dans l’équipe pour ce printemps 2024:

Géomorphologie et cartographie de dépôts stratifiés sur Mars (A. Dashdamirov, M1)

Cartographie automatique des Interior Layered Deposits (ILD), des
roches sédimentaires très friables identifiées comme des sulfates mono
et polyhydratés, en utilisant un algorithme de Machine Learning (Random
forest/SVM).

Etude de données SuperCam (V. Tricaud, M1)

Réseaux de vallées d’Arabia Terra (J. Bredon, M1)

Export de données au format STAC (I. Ilahou-Mangwuka, IUT S2A)

Etude et mise en place de collections STAC basées sur les données MarsSI, création et analyse de cartes de paramètres spectraux.

PhD proposal: Ground penetrating radar data analysis along the martian dichotomy

Encadrants

Cathy Quantin-Nataf (Université Lyon1/France) and Alain Herique (Université Grenoble Alpes/France)

Context

The Martian missions have gradually revealed that Mars abounds with evidence of a full ancient hydrological system favorable to life emergence. If so, we can expect ancestral sedimentary deposits in basins or in the Martian lowlands. Recent advances in the analyses of the surface of Mars suggest that buried Noachian deposits may be ubiquitous and locally exhumed. Different dataset can be used to study buried layers including surficial data (optical or hyperspectral), but also orbital low frequency radar data from MARSIS/Mex and SHARAD/MRO. However, penetrating radar data are still little used for subsurface geological investigations while they are crucial complementary dataset to surface data. The main reason is that the surface clutter of the rough surface of Mars is creating many reflectors inducing an ambiguity in radargrams between deep reflectors of interest and slant surface reflectors arriving at the time. The deconvolution of the surface clutter is so crucial to interpret the data in terms of subsurface structures. The classical approach for such deconvolution is to use the global altimetry data set (200m/pix) (Nouvel et al 2003, Carter et al., 2009), but at this low spatial resolution, many clutters are missed. Optical DTMs provide better resolution. However, their use remains limited due to their coverage and the presence of artifacts (Desage et al., 2023).

The goal of this PhD project is to better use higher resolution terrain models (10m/pix) to simulate the surface clutter in the goal to highlight geological reflectors possibly linked to buried layers especially in the region of the Martian dichotomy (transition between Martian low and highlands) and to complementary analyze their 3D geological context.

Methodology and work program

SHARAD (Mars SHAllow RADar sounder, onboard Mars Reconnaissance Orbiter) ground penetrating radar has the ability to sound the first few hundred meters of the subsurface with a vertical resolution of 15m and a horizontal resolution of few hundred meters (Seu et al., 2007).

To better simulate the surface clutter and remove ambiguities, we need elevation data at higher spatial resolution but with a coverage large enough to cover around 50 km on both side of the radar track. CTX Digital Elevation Models (DEMs), obtained by stereo-photogrammetry of CTX images (Beyer et al., 2018; Michael C. Malin et al., 2007), are about 10m/pix and cover about 17% of the surface of Mars allowing in certain places mosaicking of DEMs larger than 100 km. For instance, such mosaic of CTX DEMs has been produced and used to characterize the landing site of ExoMars (Volat et al., 2023).

We have developed a new pipeline allowing the mosaicking CTX images around SHARAD track to simulate the surface clutter of the observed SHARAD data. The pipeline has been delivered but all the tests and use cases in different geological context still need to be done.

The familiarization with methods and pipeline is the first part of the PhD. Geophysical interpretations and/or automated data analysis methods will be developed by the second part. The study of Oxia Planum region will for instance contribute to the characterization of the ExoMars landing site while being a study case for the pipeline validation. Then, key locations of the surfaces of Mars along the Martian dichotomy will then be analyzed and interpreted.

Required skills

The subject is between physics and planetary geosciences. We expect candidate to have solid physical background and knowledge (or at least interest) in Geosciences. Experience with penetrating radar data is not mandatory but is an advantage.

Application

CV and Cover letter to be send to cathy.quantin@univ-lyon1.fr before April 15st 2024.

Bibliography

  • Carter, L. M., Campbell, B. A., Watters, T. R., Phillips, R. J., Putzig, N. E., Safaeinili, A., et al. (2009). Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199(2), 295–302. https://doi.org/10.1016/j.icarus.2008.10.007
  • Beyer, R. A., Alexandrov, O., & McMichael, S. (2018). The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science.
  • Malin, Michael C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., et al. (2007). Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research E: Planets, 112(5), 1–25. https://doi.org/10.1029/2006JE002808
  • Seu, R., Phillips, R. J., Biccari, D., Orosei, R., Masdea, A., Picardi, G., et al. (2007). SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research E: Planets. https://doi.org/10.1029/2006JE002745
  • Volat, M; Quantin-Nataf, C; Dehecq, Digital elevation model workflow improvements for the MarsSI platform and resulting orthorectified mosaic of Oxia Planum, the landing site of the ExoMars 2022 rover, PLANETARY AND SPACE SCIENCE, 10.1016/j.pss.2022.105552, 2022
  • Desage L., Herique A., Douté S., Zine S., Kofman W., Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models, Remote sensing, https://doi.org/10.3390/rs15030764, 2023

Arrivée d’Ines Torres dans l’équipe

Après deux années de « Young Graduate Trainee » au site ESTEC de l’ESA pour préparer la mission du premier rover européen ExoMars, Inès rejoint e-Planets pour démarrer une thèse co-encadrée par Cathy Quantin Nataf (LGL-TPE) et John Carter (LAM) dans le cadre du projet ERC OCEANID.

L’objectif de sa thèse est de documenter l’enregistrement sédimentaire ancien de Mars au niveau de la transition entre les terrains hauts de l’hémisphère sud et les terrains bas du Nord et de préparer la mission ExoMars en analysant l’étendue et la nature des terrains sédimentaires qui composent le site d’atterrissage.

En effet, les missions martiennes des 20 dernières années ont révélé que Mars regorgeait de preuves d’un système hydrologique ancien complet favorable à l’émergence de la vie. Si tel est le cas, il y a tout lieu de croire que Mars a accueilli un océan hémisphérique couvrant les basses terres du nord. Cette hypothèse est aussi ancienne que l’exploration de Mars, mais a été remise en question à plusieurs reprises au cours des deux dernières décennies. Le cas de l’océan martien primitif reste l’un des problèmes les plus controversés et non résolus de la planète.

Des découvertes récentes rouvrent cette question suggérant que la principale activité océanique est peut-être plus ancienne qu’on ne le pensait avec des sédiments océaniques en partie enfouis et exhumés. La mission ExoMars Rosalind Franklin ESA qui sera lancé en 2028 a pour site d’atterrissage les dépôts sédimentaires les plus anciens jamais explorés sur Mars avec une origine potentiellement océanique.

Nous sommes tous heureux d’acceuillir et souhaiter la bienvenue à Ines!

    Démarrage du projet « OCEANID »: à la recherche de l’océan martien

    Le projet OCEANID démarre au sein du groupe e-Planets, pour 5 ans!

    Ce projet est financé par le programme Horizon Europe de l’Union Européenne (Grant agreement ID: 101045260).

    Contexte: la question de l’océan martien…

    La vie est-elle unique à notre planète ? Telle est la grande question qui motive l’exploration de la planète Mars. L’eau liquide est indispensable au développement de la vie qui est apparue sur terre il y a plus de 3,5 milliards, très probablement dans les océans primitifs de notre planète. Les missions d’exploration martiennes ont révélé ces dernières décennies que Mars regorgeait de preuves d’un système hydrologique ancien favorable à l’émergence de la vie. Si tel est le cas, il y a tout lieu de penser que Mars a accueilli un océan hémisphérique couvrant les basses terres du nord. Cette hypothèse est aussi ancienne que l’exploration de Mars, mais a été mise à mal au cours des deux dernières décennies faute de preuves. La question de l’océan martien primitif reste l’un des problèmes les plus controversés et non résolus de l’analyse de la planète Mars.

    Vue d’artiste de Mars avec un océan basée sur les informations géologiques disponibles (source: wikimedia)

    Des découvertes récentes ré-ouvrent cette question montrant que si activité océanique il y a eu, elle est peut-être plus ancienne qu’on ne le pensait avec des dépôts qui ont été enfouis sous des roches plus jeunes mais qui sont aujourd’hui en cours d’exhumation (mis à l’affleurement par l’érosion). Aussi deux rovers (Mars2020/NASA arrivé en 2021 et ExoMars qui sera lancé en 2028) ont des sites d’atterrissage dans des terrains les plus anciens jamais explorés sur Mars, présentant des sédiments potentiellement liés à un système océanique global.

    Objectifs d’OCEANID

    Pour clore le débat, l’identification de dépôts de même âge, de même composition avec une répartition globale en accord avec un éventuel niveau océanique est nécessaire. Mais de tels indices sont des observations à petite échelle résolues uniquement par un ensemble de données orbitales à haute résolution (> 10 To de données) ou par une exploration in situ restreignant le lien direct avec le contexte global. OCEANID propose de relever ce défi en étudiant à différentes échelles : globale, mésoéchelle et microéchelle en utilisant des jeux de données complémentaires (données satellitaires, données des rovers explorateurs et données expérimentales). OCEANID s’appuiera également sur une méthodologie innovante de fouille de données orbitales : reconnaissance d’objets géologiques par intelligence artificielle, modèles d’évolution d’érosion/dépôt, imagerie du sous-sol par technique radar…

    Les objectifs d’OCEANID sont de décrire les plus anciens dépôts sédimentaires martiens accumulés sous les niveaux océaniques possibles, d’établir une chronologie à petite échelle des événements primitifs et de contextualiser les missions Mars2020 et ExoMars au sein du système hydrologique global primitif.

    Conclusion

    De nouveaux membres (étudiants de thèses, post-doc) nous rejoindrons bientôt sur ce projet et et nous partagerons les résultats au fur et à mesure de notre progression sur ce sujet!

    Liens

    Perseverance est en route pour Mars !

    Le rover Perseverance de la NASA a décollé jeudi 30 juillet de Cap Canaveral, en Floride, au sommet d’un lanceur Atlas 5. Même si nous n’avons pas pu assister à l’événement sur place comme cela était prévu pour plusieurs d’entre nous, nous avons pu le suivre sur Internet et nous nous réjouissons évidemment que tout se soit bien passé !

    À l’occasion de cet événement, l’équipe e-Planets a fait quelques apparitions dans les médias. Retrouvez ci-dessous l’intervention de Cathy dans le direct du CNES :

    De son côté, Erwin a répondu aux questions de Clubic (lien vers l’article), et a participé à un autre direct sur YouTube :

    Le rover, blotti dans sa capsule protectrice et attaché à son module de croisière, a désormais devant lui un voyage interplanétaire de près de sept mois. Vous pouvez suivre sa position dans le système solaire en temps réel ici. Rendez-vous le 18 février 2021 pour l’atterrissage dans le cratère Jezero !

    Du nouveau sur Mars : l’équipe e-Planets vous emmène découvrir le site d’atterrissage du rover Perseverance

    Pour la première fois dans l’histoire de l’exploration martienne, une agence spatiale, la NASA, envoie un robot explorer les terrains les plus anciens et mystérieux de Mars : une ère que les scientifiques nomment le Noachien, soit il y a environ 4 milliards d’années. Si cette époque est encore peu comprise, les terrains qui s’y sont formés sont marqués par des traces d’activité hydrologique abondante. De plus, c’est à cette époque que la vie apparaît sur Terre, ce qui laisse espérer bon nombre de scientifiques la découverte de potentielles traces de vie ancienne sur des terrains martiens d’âge noachien.

    Le site choisi pour l’atterrissage du rover Perseverance (mission Mars 2020) est le cratère d’impact Jezero, ou « lac » en slovène, dont le nom n’a pas été choisi au hasard. En effet, de nombreux indices laissent à penser que ce cratère large d’environ 50 km a un jour été un lac, à une époque où l’eau liquide était stable à la surface de Mars. Jezero possède un delta, connecté à un vaste réseau d’anciennes rivières ayant drainé une des régions de Mars apparaissant la plus riche d’un point de vue minéralogique : la région de Nili Fossae.

    En plus de ses terrains à haut potentiel exobiologique, le site d’atterrissage du cratère Jezero expose des roches ayant préservé le passé volcanique intense de Mars au Noachien. Lucia, appuyée de Cathy, Patrick, Loïc, Gilles, Erwin, Sylvain, Cédric et Matthieu, a cette année publié une étude sur ces terrains volcaniques peu communs, riches en olivine et carbonates, dont les résultats ont été repris dans un communiqué de presse de l’ESA, l’agence spatiale européenne.

    Les terrains riches en olivine et carbonates apparaissent bleus sur cette vue 3D en fausses couleurs. © NASA/JPL/Université d’Arizona ; traitement de l’image : L. Mandon

    L’équipe révèle ainsi que ces terrains formés il y a environ 3,8 milliards d’années résultent le plus probablement d’éruptions volcaniques explosives particulièrement intenses, ayant recouvert la région sous des milliers de kilomètres carrés de cendres et autres dépôts pyroclastiques. Ces terrains font partie des roches qui seront échantillonnées en priorité dans l’optique d’un retour d’échantillons sur Terre. Des analyses poussées en laboratoire permettraient ainsi une comparaison directe entre l’âge de formation estimée depuis l’orbite et l’âge véritable de ces roches, calibrant ainsi la chronologie martienne.

    De nombreux membres de l’équipe sont impliqués de près ou de loin dans cette mission, qui nous en sommes sûrs, permettra de lever le voile sur un certain nombre d’incertitudes quant à notre connaissance de l’histoire de Mars, mais qui pourrait également se révéler riche en rebondissements… Affaire à suivre de près !

    InSight s’est posée sur Mars !

    Ouf ! L’atterrissage de la sonde américaine InSight, dont nous vous parlions il y a quelques jours, s’est bien passé ! L’étape la plus délicate de la mission est donc derrière nous, même s’il faudra encore un peu de patience pour le démarrage de la science proprement dite, car il reste à déployer les instruments sur le sol martien et à s’assurer de leur bon fonctionnement.

    L’événement a été suivi par un public nombreux partout en France et a été l’occasion pour plusieurs membres de l’équipe e-Planets de faire des apparitions à la télévision ou sur Internet. Vous trouverez les liens vers les vidéos correspondantes ci-dessous. Bon visionnage !

    Lu a été interviewée par Euronews :

    L’intervention de Lu démarre à 0:49.
    [English version here]

    Chloé et Cathy ont participé à la soirée organisée par la Cité des Sciences et de l’Industrie, à Paris, qui était retransmise en direct sur YouTube :

    L’intervention de Chloé démarre à 1:23:20 et celle de Cathy à 1:33:20.

    Enfin, Erwin a participé à une autre émission en direct sur YouTube, diffusée depuis le Centre Spatial de Toulouse :

    L’intervention d’Erwin démarre à 11:15.

    Arrivée imminente de la sonde InSight

    Après plus de six mois dans l’espace, la sonde américaine InSight est bientôt arrivée au bout de son périple : ce lundi 26 novembre, dans la soirée (en heure française), elle atterrira à la surface de Mars, dans la région d’Elysium Planitia. Pour cela, il lui faudra traverser l’atmosphère de la planète et passer d’une vitesse de 20 000 km/h à moins de 10 km/h, afin de se poser sans casse, le tout en six minutes et 45 secondes ! Même si la Nasa a déjà réussi cette prouesse plusieurs fois dans le passé, cela reste un moment critique, communément surnommé les « sept minutes de terreur ».

    Contrairement au rover Curiosity, qui a parcouru plus de vingt kilomètres depuis son arrivée en 2012, la sonde InSight n’est pas dotée de roues : elle restera donc sur place. Pourquoi ? Simplement car sa mission est très différente de celle de Curiosity : alors que ce dernier s’intéresse aux roches situées en surface, ainsi qu’à l’atmosphère, InSight va étudier l’intérieur de Mars. L’instrument phare de la mission est d’ailleurs le sismomètre SEIS, fourni le CNES. Celui-ci va enregistrer les ondes sismiques générées par les « craquements » de la croûte martienne ainsi que par les impacts de météorites, afin de déterminer la structure profonde de la planète, y compris la taille de son noyau. Ainsi, on comprend mieux pourquoi InSight n’a pas besoin de se déplacer pour collecter des données : ce sont les données qui vont venir à elle !

    Plusieurs membres de l’équipe e-Planets — Chloé Michaut, Benoit Tauzin, Lu Pan et Cathy Quantin — sont directement impliqués dans la mission. Leur projet de recherche s’intéresse en particulier à l’origine ce que l’on appelle la dichotomie martienne, c’est-à-dire la différence d’altitude très marquée (six kilomètres !) entre les plaines du Nord et les plateaux du Sud. Pour comprendre l’origine de cette caractéristique mystérieuse, Chloé et Benoit souhaitent détecter des discontinuités sismiques (interfaces au niveau desquelles la vitesse de propagation des ondes change brutalement), en particulier l’équivalent martien du « Moho », la discontinuité qui marque la base de la croûte et le sommet du manteau. Pour cela, ils s’appuieront sur des techniques modernes d’analyse de données, exploitant la réflexion et la conversion des ondes sismiques sur ces discontinuités, ainsi que sur des modèles d’évolution thermique de la croûte. De leur côté, Lu et Cathy étudient à l’aide de données orbitales la composition des pics centraux des cratères de la région d’Elysium, afin de déterminer la structure superficielle de la croûte sous le site d’atterrissage d’InSight. Ces contraintes géologiques serviront d’informations a priori lors de l’inversion des signaux sismiques.

    À noter que dans le cadre de cette étude, Lu a eu l’opportunité de donner un nom à l’un de ces cratères, et ce nom a été récemment approuvé par l’Union Astronomique Internationale ! Les détails dans cet autre billet.

    Pour l’atterrissage lui-même, l’équipe sera également au rendez-vous, puisque Chloé et Cathy interviendront à la Cité des Sciences, à Paris, durant un grand événement ouvert au public. Erwin, de son côté, sera au Centre Spatial de Toulouse pour participer à une émission en direct sur YouTube.

    Vue d’artiste de l’atterrissage de la sonde InSight sur Mars. (NASA/JPL-Caltech)