Arrivée d’Ines Torres dans l’équipe

Après deux années de « Young Graduate Trainee » au site ESTEC de l’ESA pour préparer la mission du premier rover européen ExoMars, Inès rejoint e-Planets pour démarrer une thèse co-encadrée par Cathy Quantin Nataf (LGL-TPE) et John Carter (LAM) dans le cadre du projet ERC OCEANID.

L’objectif de sa thèse est de documenter l’enregistrement sédimentaire ancien de Mars au niveau de la transition entre les terrains hauts de l’hémisphère sud et les terrains bas du Nord et de préparer la mission ExoMars en analysant l’étendue et la nature des terrains sédimentaires qui composent le site d’atterrissage.

En effet, les missions martiennes des 20 dernières années ont révélé que Mars regorgeait de preuves d’un système hydrologique ancien complet favorable à l’émergence de la vie. Si tel est le cas, il y a tout lieu de croire que Mars a accueilli un océan hémisphérique couvrant les basses terres du nord. Cette hypothèse est aussi ancienne que l’exploration de Mars, mais a été remise en question à plusieurs reprises au cours des deux dernières décennies. Le cas de l’océan martien primitif reste l’un des problèmes les plus controversés et non résolus de la planète.

Des découvertes récentes rouvrent cette question suggérant que la principale activité océanique est peut-être plus ancienne qu’on ne le pensait avec des sédiments océaniques en partie enfouis et exhumés. La mission ExoMars Rosalind Franklin ESA qui sera lancé en 2028 a pour site d’atterrissage les dépôts sédimentaires les plus anciens jamais explorés sur Mars avec une origine potentiellement océanique.

Nous sommes tous heureux d’acceuillir et souhaiter la bienvenue à Ines!

    Soutenance de thèse : Valentin Bonnet Gibet

    Valentin Bonnet Gibet (LGL-TPE, ENS de Lyon) soutiendra sa thèse, intitulée « Formation de la croûte et histoire thermique Martienne » qui aura lieu le Lundi 23 octobre 2023 à 14h en salle des thèses à l’ENS Monod (46 allée d’Italie, Lyon).

    La sismologie a récemment apporté d’importantes informations sur la structure de l’intérieur de Mars et en particulier de sa croûte. L’épaisseur moyenne de la croûte est contrainte entre 50 et 67 km avec une différence de 12 à 34 km entre les hémisphères Nord et Sud. Cette dichotomie est une caractéristique essentielle de la surface Martienne. Dans cette thèse, je propose un nouveau mécanisme pour expliquer sa formation, basé sur un processus de rétroaction positive entre l’épaisseur de la croûte et son extraction. La croûte étant enrichie en éléments producteurs de chaleur, lorsqu’elle est plus épaisse, la base de la lithosphère, qui est une limite rhéologique et donc thermique, est atteinte à une profondeur moindre. Sous une lithosphère amincie, la fraction de liquide dans le manteau est plus élevée, car à une même température mais à plus faible pression. Les vitesses d’extraction de magma sont alors plus élevées et la croûte croit plus rapidement là où elle est plus épaisse. La diffusion de la chaleur dans la lithosphère favorisant les grandes longueurs d’onde, nous proposons que ce mécanisme ait pu générer la dichotomie martienne. Pour le tester, j’ai développé un modèle d’évolution thermique paramétré asymétrique incluant l’extraction de la croûte. Avec ce modèle, nous démontrons qu’une dichotomie crustale se développe et croit à partir d’une perturbation hémisphérique initiale négligeable. Pour une certaine gamme de paramètres, notre modèle est capable de reproduire les observations sur l’épaisseur de la croûte et la structure thermique du manteau. Nous montrons aussi qu’une planète en couche stagnante avec une forte dichotomie d’épaisseur de croûte se refroidit légèrement plus vite qu’une planète dont la croûte est d’épaisseur constante. Enfin, nous démontrons que notre modèle de croissance de la dichotomie fournit également une explication pour la formation de roches différenciées dans les Hautes Plateaux du Sud.

    Le jury sera constistitué de :

    • BARATOUX David, Rapporteur, Directeur de recherche, IRD – Université Félix Houphouët-Boigny
    • CHOBLET Gaël, Rapporteur, Directeur de recherche, LPG – Nantes Université
    • SAUTTER Violaine, Examinatrice, Directrice de recherche, MNHN – Sorbonne Université
    • LABROSSE Stéphane, Examinateur Professeur des universités, LGLTPE – ENS de Lyon
    • WIECZOREK Mark, Invité, Directeur de recherche, IPGP – Université Paris Cité
    • MICHAUT Chloé, Directrice de thèse Professeure des universités LGLTPE – ENS de Lyon

    Le traditionnel pot de thèse aura lieu dans la salle conviviale du laboratoire (bâtiment M8, 2e étage).

    Soutenance de thèse: Selma Benseguane

    Selma Benseguane (LGL-TPE) soutiendra sa soutenance de thèse intitulée « De la topographie locale à la morphologie globale: origines et conséquences sur l’activité des noyaux cométaires ». La présentation se tiendra en anglais le lundi 25 septembre à 14h à la Salle Fontannes du Bâtiment Charles Darwin D, RdC, à La Doua.

    Les noyaux cométaires présentent une complexité considérable à la fois à l’échelle locale et globale. Des dépressions circulaires, ou « pits », ont été observées sur toutes les comètes de la famille de Jupiter visitées par des sondes spatiales, ce qui a suscité un intérêt pour leur formation et leur évolution par l’activité thermique et l’érosion dans les conditions d’illumination actuelles. De plus, l’irrégularité globale de ces noyaux nous a conduit à examiner son impact potentiel sur leur activité globale et l’importance des données de forme pour ajuster précisément les courbes d’activité observées au sol.

    Pour étudier ces questions, nous avons modélisé l’activité thermique, à la fois au niveau des structures topographiques locales, ou pits, et du noyau entier – en fonction de l’objectif de chaque étude – en tenant compte du modèle de forme complexe et des conditions d’illumination de la surface qui lui sont associées. Pour chaque facette du modèle de forme local ou global, nous calculons l’énergie solaire, y compris les effets d’ombre et de self-heating, que nous intégrons comme condition de surface d’un mo- dèle d’évolution thermique. Ce modèle, à son tour, génère des résultats d’activité, tels que les taux de production de gaz ou de poussière et l’érosion locale.

    Nous avons étudié les pits présents à la surface de 67P/C-G, 9P/Tempel 1, 81P/Wild 2 et 103P/Hartley 2, pour lesquels nous disposons de modèles de forme 3D à haute réso- lution. Nous avons exécuté les simulations pendant la période correspondant à la durée que chaque comète a passée sur son orbite actuelle au sein du Système Solaire interne (par exemple, 10 orbites pour 67P). Nous avons trouvé que l’érosion des pits, atteinte après toutes les révolutions orbitales, ne peut pas expliquer leur morphologie actuelle. Ceci est valable tant en termes de quantité de matière érodée qu’en termes de schéma d’évolution de la forme résultant d’un tel processus. Par conséquent, les pits ne sont probablement pas formés par l’érosion durant les orbites actuelles du Système Solaire.

    Pour notre étude de l’activité globale, nous nous sommes concentrés sur les comètes 67P, 9P et 103P. Ces comètes disposent de modèles de forme 3D et de taux de production observés couvrant suffisamment la période du périhélie. En utilisant ces données, nous avons pu comparer les taux de production d’eau observés et simulés. Nos simulations ont incorporé à la fois des modèles de forme à basse résolution qui conservent la forme globale de la comète et des modèles sphériques avec des surfaces équivalentes. Nous avons également ajusté divers paramètres structurels et thermiques initiaux. Notre étude a conclu que la compréhension de l’activité séculaire des comètes nécessite de prendre en compte les hétérogénéités thermiques ou mécaniques tout autant que la forme, voire plus. Les observations au sol seules ne peuvent pas lever l’ambiguïté entre ces caracté- ristiques, justifiant ainsi une approximation sphérique pour une compréhension initiale de l’activité cométaire.

    La soutenance sera suivie du traditionnel pot de thèse.

    Soutenance de thèse: Anastasios Gkotsinas

    Anastasios Gkotsinas (LGL-TPE) soutiendra sa soutenance de thèse intitulée « Sur la primitivité des noyaux cométaires : modélisation couplée de leur évolution thermique et dynamique”. La présentation se tiendra en anglais le jeudi 21 septembre à 14h à la Salle de Conférence de la BU
    Sciences, sur le campus de la Doua.

    Les comètes sont une population de petits corps du Système Solaire souvent décrits comme les objets les plus primitifs de notre Système Solaire, détenant des informations précieuses sur sa formation et son évolution. Formées tôt, au même temps que les planètes géantes, dans les parties externes du disque protoplanétaire et dispersées vers l’extérieur peu après leur formation pour être stockées dans des réservoirs lointains et froids, elles sont considérées comme ayant largement conservé leurs propriétés et composition primordiales. Cependant, le niveau de leur nature primitive a commencé à être revu, car un nombre croissant d’observables et d’études théoriques suggèrent la possibilité d’altérations thermiques avant leur retour dans les parties internes du Système Solaire où elles sont généralement étudiées et observées. Dans ce contexte, ce travail vise à examiner le niveau de cette nature primitive pour les différentes familles cométaires de notre Système Solaire. Dans ce but, nous avons développé un modèle d’évolution thermique dédié, conçu pour un couplage efficace aux simulations N-corps qui suivent l’évolution orbitale à long terme des planétésimaux, provenant des parties externes du disque protoplanétaire et évoluant vers des orbites dans la région planétaire, après un séjour prolongé dans les réservoirs extérieurs du système solaire. Nos résultats révèlent la possibilité d’altérations thermiques, affectant principalement le contenu condensé primordial d’hyper-volatiles et dans un second lieu le contenu primordial modérément volatile et la glace d’eau amorphe, au cours des premières phases de la vie des comètes. Une étude comparative indique que les comètes à longue période devraient être la population la moins altérée. Une activité intense, mais sporadique, est également enregistrée dans la région des planètes géantes, alors que les comètes reviennent dans le Système Solaire interne, compatible avec les observables actuelles concernant la population de Centaures. Ces résultats indiquent que l’évolution thermique des noyaux cométaires est inextricablement liée à leur évolution orbitale. Ils indiquent également que l’activité cométaire observée dans les parties internes du Système Solaire provient très probablement de couches déjà altérées, soulignant la nécessité de prendre en compte l’histoire dynamique des comètes lors de l’interprétation des observations actuelles.

    La soutenance sera suivie d’un traditionnel pot de thèse qui se tiendra au R6 du bâtiment Géode ou si la météo le permetau square de la Doua, jusqu’à côté.