Nouveau nom pour un cratère d’impact sur Mars ! // New name for an impact crater on Mars!

***See English version below***

Rien de plus naturel que de nommer les choses que nous voyons. Par exemple, nous nommons nos chats, chiens, rues, bâtiments, villes… Nous nommons aussi les planètes, étoiles, montagnes, rivières, etc. Pour des objets géologiques sur les autres planètes qui sont en cours d’exploration, nous avons sans cesse besoin de nouveaux noms. Le groupe de travail pour la nomenclature des systèmes planétaires de l’Union Astronomique Internationale (UAI) est l’organisation qui décide des règles pour nommer les objets sur les autres planètes. Par exemple, pour nommer un cratère sur la Lune, il faut choisir un nom de grand scientifique ou explorateur décédé. Pour nommer un objet sur Venus, on peut choisir le nom d’une déesse ou d’une femme célèbre. Sur Mars, les cratères de plus de 60 kilomètres sont nommés d’après des scientifiques ou des auteurs, et les cratères de moins de 60 kilomètres sont nommés d’après un village ou une petite ville avec une population de moins de 100 000 habitants.

Nous avons longuement étudié un cratère de 50 km dans la région du site d’atterrissage de la sonde InSight. Ce cratère a exposé des matériaux profonds de minéralogie et de morphologie variées. Plusieurs études qui ont remarqué ce cratère le mentionnent comme le cratère « sans nom ». Nous avons donc pensé qu’il était important de lui trouver un nom ! Selon les règles de l’UAI, nous pouvons proposer un nom, puis c’est au groupe de travail de l’approuver au non, parce qu’ils veulent s’assurer que toutes les régions du monde soient bien représentées. Le nom que j’ai choisi est « Kalpin », qui est une petite ville dans la province de Xinjiang en Chine. C’est là où j’ai mené mon projet de recherche durant mes premières années à l’université (j’ai étudié une couche de lapilli dans les dépôts volcaniques du bassin de Tarim). Kalpin est située à côté du bassin de Tarim, qui abrite le désert du Taklamakan. La région est réputée pour ses nans, ses kebabs d’agneau et ses pastèques. —Délicieux ! 😛

Carte de la ville de Kalpin, province de Xinjiang, en Chine. (Crédit : Google Earth)

Pour notre plus grand plaisir, l’UAI a accepté le nom et l’a annoncé officiellement le 15 novembre. Vous pouvez trouver l’annonce ici :
https://astrogeology.usgs.gov/news/nomenclature/name-approved-for-feature-on-mars-kalpin

Voilà donc le cratère Kalpin sur Mars ! Les coordonnées du centre sont (Latitude : 8.93 °; Longitude : 141.27 °). Vous trouverez ci-dessous les images de ce cratère dans l’infrarouge thermique, de jour et de nuit.

Lu Pan

Images infrarouges de jour et nuit du cratère Kalpin, sur Mars (instrument THEMIS).
L’image de jour montre l’albédo des matériaux dans l’infrarouge, tandis que l’image de nuit est liée à leurs propriétés physiques et thermiques (roches vs sable vs poussière).

***ENGLISH VERSION***

It is simply natural to give names to refer to the things that we see. We give names to cats, dogs, street, buildings, and cities. We also name our planets, stars, mountains, rivers, etc. For features on other planets that we are currently exploring, we need to come up with new names all the time. The International Astronomical Union (IAU) Working Group for Planetary System Nomenclature has taken the responsibility and made up rules on how we should name different objects on planets. For example, to name a crater on the Moon, you pick a name of great deceased scientists and polar explorers. To name a feature on Venus, you find names of goddesses and heroines. Any crater larger than 60 km on Mars is named after a deceased scientist or writer, whereas craters smaller than 60 km gets a name from a village or town with a population less than 100,000.

We’ve been looking at a 50-km crater for some time for our study in the region of InSight landing site. This crater exposes materials of different mineralogy and morphology from the subsurface and has already been mentioned in several other studies, always referred to as an “unnamed crater”. Thus, we find it is important to give it a name! According to IAU rules, we can propose a name and then the working group on nomenclature will see if they approve it or not, making sure different places on Earth are well-represented in the naming system. The name I chose is from a small town called Kalpin in Xinjiang province where I did my undergraduate research (I was studying a layer of accretionary lapilli of the volcanic deposits in the Tarim basin). Kalpin is a very small town near Tarim basin, the home to the famous Taklamakan Desert. There they are famous for their nans, lamb kebabs and watermelons! —-Delicious! :P.

Map of the town of Kalpin in Xinjiang province, China. (credit: Google Earth)

Fortunately, the IAU accepted the name and announced it on November 15. You can find the information here: https://astrogeology.usgs.gov/news/nomenclature/name-approved-for-feature-on-mars-kalpin

So now I give you the newly named Kalpin crater on Mars! The center coordinates are (Latitude: 8.93 °, Longitude: 141.27 °). Below are the infrared images of this crater in day-time and night-time data.

Lu Pan

THEMIS day-time and night-time image of Kalpin crater on Mars. The day-time infrared shows the albedo of the feature in the infrared, while the night-time image is related to the thermal physical property of the materials (rocks vs sand vs dust). 

Réunion à Bern sur la fragmentation des météores martiens

Les bolides de petites tailles qui viennent percuter un corps planétaire avec atmosphère sont fragmentés lors de leur passage dans l’atmosphère. C’est le cas sur Terre comme l’avait illustré la chute de météorite sur Chelyabinsk en 2013. Mais c’est aussi le cas sur Mars. Pour étudier ces phénomènes sur Mars, Olga Popova (spécialiste des météores terrestres de l’académie des sciences de Russie), Bill Hartmann (père de l’analyse des cratères d’impact dans le système solaire, USA), Sylvain Breton et Cathy Quantin-Nataf se sont retrouvés à Bern dans les locaux de l’ISSI (Institut International de Sciences Spatiales).

Le cratère source de certaines météorites, les shergottites, a enfin été identifiée à la surface de Mars !

Les météorites martiennes sont les seuls échantillons de la planète Mars disponibles sur Terre, puisqu’aucune mission spatiale n’a encore permis d’en ramener directement. Ces météorites sont donc une source exceptionnelle d’informations. Malheureusement, jusqu’à aujourd’hui, on ne connaissait pas leur provenance exacte à la surface de Mars. Or, sur la seule base d’un échantillon, de nombreuses interprétations géologiques ne peuvent être faites qu’en connaissant son terrain d’origine afin de pouvoir le replacer dans son contexte. Une limitation en passe d’être levée…

En effet, une équipe franco-norvégienne composée de Stephanie Werner (CEED, Université d’Oslo), Anouck Ody (LGLTPE, Université Lyon1) et François Poulet (IAS, Université Paris sud 11), a mis le doigt sur le cratère qui est très certainement la source de la classe des météorites martiennes appelées shergottites. Il s’agit du cratère Mojave, situé proche de l’équateur de Mars et qui a été formé il y a moins de 5 millions d’années.
Cet âge de formation est en accord avec l’âge d’éjection des shergottites mesuré grâce à leur exposition aux rayons cosmiques lors de leur séjour dans l’espace. De plus, l’analyse de données spectrales collectées par les instruments OMEGA à bord de Mars Express et CRISM à bord de Mars Reconnaissance Orbiter a montré que le cratère Mojave est formé de roches ayant une composition minéralogique très similaire à celle des shergottites.
Le terrain impacté lors de la formation du cratère Mojave est un terrain très ancien daté à plus de 4 milliards d’années. Or l’âge des shergottites est encore à ce jour au centre d’un vif débat. En effet, elles ont été initialement estimées à moins de 600 millions d’années, mais réévaluées à plus de 4 milliards d’années par une étude récente (Bouvier et al., 2009).
Ces deux estimations séparées de près de 4 milliards d’années impliquent des histoires géologiques de Mars complètement différentes. L’étude de Werner et. al (2014) permet de trancher en faveur de l’âge le plus ancien, ce qui pourrait avoir des implications dans notre compréhension de l’évolution primordiale de Mars.
De plus, ces nouvelles contraintes sur l’origine de ces météorites devraient permettre de mieux comprendre les informations qu’elles fournissent sur la composition minéralogique et chimique de Mars. Ces connaissances permettront de mieux sélectionner le site d’un futur retour d’échantillons martiens, retour cette fois-ci robotisé.

The Source Crater of Martian Shergottite Meteorites by Stephanie C. Werner, Anouck Ody and François Poulet – Science Express le 6 mars 2014 / Science le 14 mars 2014.
Lien vers l’article

Cratères papillons

Cette semaine, deux e-martiens étaient à Bern invités par ISSI (International Space Science Institute) pour travailler avec d’autres experts du sujet sur la cratérisation dans le système solaire interne. Nous avons tout particulièrement étudié les petits cratères d’impact formés par la retombée de matériel d’un plus gros impact. A cette occasion, nous avons découvert des cratères papillons! Un exemple est montré dans la figure ci-dessous. La forme des éjectas (matériel entourant le cratère) rappelle celle des ailes d’un papillon d’où son surnom. D’après la balistique, ce type de cratère se produit lorsque l’angle d’impact est faible.  Dans le cas de l’image ci-dessous, du matériel aurait été éjecté d’un cratère martien principal nommé Gratteri pour retomber avec un angle inférieur à 45° quelques 150 kilomètres plus loin……

Une nouvelle météorite martienne

La Meteoritical Society a publié hier une annonce concernant le référencement d’une nouvelle météorite martienne : la météorite de Tissint. Cette météorite est tombée en 2011 au Maroc et le poids total des fragments retrouvés s’élève à 7kg.

Fragment de la météorite martienne Tissint - CREDIT: © 2011 Darryl Pitt / Macovich Collection

Le bulletin nous indique les caractéristiques de cette météorite, la rangeant dans la catégorie des Shergottite (olivine-phyric shergottite). Les principaux minéraux présents sont : olivine (coeur des cristaux de composition Fa20 à Fa30 tandis que les bordures ont une composition comprise entre Fa43 et Fa60), orthopyroxène (Fs24Wo4), pigeonite (Fs26 à Fs51 et Wo12 à Wo17), augite (Fs22Wo25) et plagioclase (An63Or0.5).

Cette météorite est intéressante en raison du volume d’échantillon récupéré et en raison de son état de fraicheur, comme on peut le constater sur la photo ci-dessus. Pour continuer à avoir des informations, notamment les analyses géochimiques concernant la datation, il faudra attendre les prochaines publications. Et comme tout bon spectroscopiste, je terminerais en rajoutant : vivement les spectres!