Le rover Perseverance de la NASA a décollé jeudi 30 juillet de Cap Canaveral, en Floride, au sommet d’un lanceur Atlas 5. Même si nous n’avons pas pu assister à l’événement sur place comme cela était prévu pour plusieurs d’entre nous, nous avons pu le suivre sur Internet et nous nous réjouissons évidemment que tout se soit bien passé !
À l’occasion de cet événement, l’équipe e-Planets a fait quelques apparitions dans les médias. Retrouvez ci-dessous l’intervention de Cathy dans le direct du CNES :
De son côté, Erwin a répondu aux questions de Clubic (lien vers l’article), et a participé à un autre direct sur YouTube :
Le rover, blotti dans sa capsule protectrice et attaché à son module de croisière, a désormais devant lui un voyage interplanétaire de près de sept mois. Vous pouvez suivre sa position dans le système solaire en temps réel ici. Rendez-vous le 18 février 2021 pour l’atterrissage dans le cratère Jezero !
Ouf ! L’atterrissage de la sonde américaine InSight, dont nous vous parlions il y a quelques jours, s’est bien passé ! L’étape la plus délicate de la mission est donc derrière nous, même s’il faudra encore un peu de patience pour le démarrage de la science proprement dite, car il reste à déployer les instruments sur le sol martien et à s’assurer de leur bon fonctionnement.
L’événement a été suivi par un public nombreux partout en France et a été l’occasion pour plusieurs membres de l’équipe e-Planets de faire des apparitions à la télévision ou sur Internet. Vous trouverez les liens vers les vidéos correspondantes ci-dessous. Bon visionnage !
Lu a été interviewée par Euronews :
Chloé et Cathy ont participé à la soirée organisée par la Cité des Sciences et de l’Industrie, à Paris, qui était retransmise en direct sur YouTube :
Enfin, Erwin a participé à une autre émission en direct sur YouTube, diffusée depuis le Centre Spatial de Toulouse :
Après plus de six mois dans l’espace, la sonde américaine InSight est bientôt arrivée au bout de son périple : ce lundi 26 novembre, dans la soirée (en heure française), elle atterrira à la surface de Mars, dans la région d’Elysium Planitia. Pour cela, il lui faudra traverser l’atmosphère de la planète et passer d’une vitesse de 20 000 km/h à moins de 10 km/h, afin de se poser sans casse, le tout en six minutes et 45 secondes ! Même si la Nasa a déjà réussi cette prouesse plusieurs fois dans le passé, cela reste un moment critique, communément surnommé les « sept minutes de terreur ».
Contrairement au rover Curiosity, qui a parcouru plus de vingt kilomètres depuis son arrivée en 2012, la sonde InSight n’est pas dotée de roues : elle restera donc sur place. Pourquoi ? Simplement car sa mission est très différente de celle de Curiosity : alors que ce dernier s’intéresse aux roches situées en surface, ainsi qu’à l’atmosphère, InSight va étudier l’intérieur de Mars. L’instrument phare de la mission est d’ailleurs le sismomètre SEIS, fourni le CNES. Celui-ci va enregistrer les ondes sismiques générées par les « craquements » de la croûte martienne ainsi que par les impacts de météorites, afin de déterminer la structure profonde de la planète, y compris la taille de son noyau. Ainsi, on comprend mieux pourquoi InSight n’a pas besoin de se déplacer pour collecter des données : ce sont les données qui vont venir à elle !
Plusieurs membres de l’équipe e-Planets — Chloé Michaut, Benoit Tauzin, Lu Pan et Cathy Quantin — sont directement impliqués dans la mission. Leur projet de recherche s’intéresse en particulier à l’origine ce que l’on appelle la dichotomie martienne, c’est-à-dire la différence d’altitude très marquée (six kilomètres !) entre les plaines du Nord et les plateaux du Sud. Pour comprendre l’origine de cette caractéristique mystérieuse, Chloé et Benoit souhaitent détecter des discontinuités sismiques (interfaces au niveau desquelles la vitesse de propagation des ondes change brutalement), en particulier l’équivalent martien du « Moho », la discontinuité qui marque la base de la croûte et le sommet du manteau. Pour cela, ils s’appuieront sur des techniques modernes d’analyse de données, exploitant la réflexion et la conversion des ondes sismiques sur ces discontinuités, ainsi que sur des modèles d’évolution thermique de la croûte. De leur côté, Lu et Cathy étudient à l’aide de données orbitales la composition des pics centraux des cratères de la région d’Elysium, afin de déterminer la structure superficielle de la croûte sous le site d’atterrissage d’InSight. Ces contraintes géologiques serviront d’informations a priori lors de l’inversion des signaux sismiques.
À noter que dans le cadre de cette étude, Lu a eu l’opportunité de donner un nom à l’un de ces cratères, et ce nom a été récemment approuvé par l’Union Astronomique Internationale ! Les détails dans cet autre billet.
Pour l’atterrissage lui-même, l’équipe sera également au rendez-vous, puisque Chloé et Cathy interviendront à la Cité des Sciences, à Paris, durant un grand événement ouvert au public. Erwin, de son côté, sera au Centre Spatial de Toulouse pour participer à une émission en direct sur YouTube.
Une tempête qui s’est déclarée au mois de mai a grossi de semaine en semaine et enveloppe maintenant toute la planète Mars d’une brume de poussière. Sur place, cela a obligé le rover américain Opportunity à suspendre ses activités, ses panneaux solaires ne recevant plus assez d’énergie. Mais Opportunity n’est pas le seul à être embêté : les astronomes amateurs le sont aussi, eux qui attendaient impatiemment l’opposition de Mars (c’est-à-dire son alignement avec la Terre et le Soleil) fin juillet pour photographier les détails de sa surface ! Hélas, pour le moment, le rideau de poussière ne laisse plus grand-chose à voir.
Les tempêtes sur Mars se déclarent le plus souvent autour du périhélie, lorsque la planète est au plus près du Soleil, ce qui coïncide avec l’été dans son hémisphère sud. L’augmentation de l’ensoleillement, alors que la calotte saisonnière de dioxyde de carbone ne s’est pas encore sublimée, engendre des contrastes de température importants et donc des vents violents, soulevant ainsi de grandes quantités de poussière dans l’atmosphère. Ce phénomène peut s’emballer et générer une tempête globale, mais les conditions nécessaires pour que cela se produise ne sont pas encore bien comprises. Les deux dernières tempêtes globales observées sur Mars datent de 2007 et 2001.
En haut : comparaison de deux vues de Mars acquises en juillet 2016 (sans tempête de poussière) et juillet 2018 (en pleine tempête globale). En bas : simulations informatiques montrant les structures théoriquement observables aux dates correspondantes. Photos et montage : C. Brustel.
Les deux images ci-dessus ont été prises par Clément Brustel, membre de l’équipe e-Planets, le 10 juillet 2016 et le 1er juillet 2018, avec un petit télescope depuis la France. La plus récente montre à quel point la tempête a opacifié l’atmosphère de Mars ! Seules quelques petites zones sombres de la surface et la calotte de glace de l’hémisphère sud sont encore visibles.
Depuis la Terre, il n’est pas si facile de photographier les planètes. Ces images résultent en fait d’un empilement de milliers de prises de vue. La technique utilisée ici est appelée « lucky imaging« , qui consiste non pas à prendre une unique photo, mais une vidéo à plusieurs centaines d’images par seconde, et ce pendant plusieurs minutes pour « figer » la turbulence de l’atmosphère terrestre. Les images sont ensuite triées automatiquement en fonction de leur netteté et seules celles prises par chance (d’où le nom de cette technique !) pendant les courts moments d’accalmie sont gardées et empilées pour composer l’image finale.
Le 31 juillet, Mars sera au plus proche de la Terre, comme tous les deux ans et deux mois, mais cette fois-ci, elle sera au plus proche depuis 2003. Vous pouvez en ce moment l’observer à l’œil nu en milieu de nuit, sa forte luminosité et sa couleur orange/rouge ne la laissant pas passer inaperçue.
La dernière fois que le rover Curiosity avait foré avec succès sur Mars, c’était en octobre 2016, sur une roche nommée Sebina. Le forage suivant, à Precipice, avait échoué en raison d’une anomalie avec le « drill feed », le mécanisme chargé de pousser le foret au fur et à mesure du creusement de la roche. Après de multiples tests et diagnostics, les ingénieurs du JPL avaient dû se rendre à l’évidence : il ne serait pas possible de refaire fonctionner ce mécanisme…
Et pourtant, la foreuse est l’un des outils les plus importants du rover, car elle sert à alimenter deux instruments de bord : CheMin, qui permet de déterminer la minéralogie des échantillons par diffraction des rayons X, et SAM, qui permet de mesurer les « gaz évolués » (c’est-à-dire les gaz qui s’échappent de l’échantillon lorsque celui-ci est chauffé jusqu’à 1000°C) mais aussi de détecter et d’identifier d’éventuelles molécules organiques. Bref, la perte définitive de la foreuse aurait été une très mauvaise nouvelle pour le retour scientifique de la mission.
Les ingénieurs du JPL ont donc travaillé d’arrache-pied pour contourner le problème du drill feed, en s’appuyant notamment sur le « testbed », un jumeau de Curiosity resté ici sur Terre. La solution qu’ils ont trouvée consiste à utiliser directement le bras robotique qui porte la foreuse pour pousser le foret dans la roche (voir cet exemple en vidéo). Cela semble facile sur le papier, mais le bras n’ayant pas été conçu pour cette tâche, il fallait s’assurer qu’il puisse appliquer exactement la force nécessaire, tout en maintenant le foret bien droit pour ne pas le tordre.
Ce week-end, cette solution a été testée sur Mars, sur une roche nommée Duluth, et c’est avec une certaine appréhension que toute l’équipe de la mission, ingénieurs comme scientifiques, attendait le résultat. Lundi matin, un e-mail envoyé par Ashwin Vasavada, le responsable scientifique du projet, a rassuré tout le monde : « Duluth is now a drill hole! », disait l’objet. Curiosity peut de nouveau forer sur Mars, et c’est une excellente nouvelle pour la science martienne !
Le trou creusé par la foreuse de Curiosity sur la roche Duluth. Image Navcam, sol 2057 (20 mai 2018). NASA/JPL-Caltech.