La carte géologique d’Oxia Planum est publiée!

En 2018, la plaine d’Oxia Planum, dans la région d’Oxia, était sélectionnée comme site d’atterrissage de la mission d’investigation du rover « Rosalind Franklin »/Exomars (ESA). Cette mission d’exobiologie hors normes a un lancement prévu pour 2028.

Vue synthétique d’Oxia Planum à partir des données d’imagerie satéllite (CTX, HRSC)

Une des étapes suivantes de la missions était l’organisation par l’ESA d’un groupe de travail pour la création d’une carte de la géologie à haute résolution. Si les études de sélection de sites avait montré l’intérêt de la région, il s’agit désormais d’avoir une connaissance approfondie des types de sols présentés afin que, une fois arrivé, le rover Rosalind Franklin puisse être guidé vers les zones d’intérêt les plus proches (et les plus sûres).

C’était la mission du groupe « Macro » de l’équipe scientifique d’Exomars. Matthieu Volat (Observatoire de Lyon) a pu faire profiter de son expérience et du système MarsSI pour fournir des modèles 3D de terrain et de l’imagerie rectifiée sur la base des caméras CTX et HiRISE de la mission satellite NASA MRO. Ces données ont été également complétée par des détections minérales issues des instruments OMEGA (mission Mars Express de l’ESA) et CRISM (MRO) issues du travail de Cathy Quantin-Nataf, Lu Pan, Lucia Mandon (LGLTPE durant ces travaux) et John Carter (IAS durant ces travaux), ainsi que de données CASSIS (mission ESA TGO) fournies par l’équipe CASSIS elle-même. Ces données collectées ont alimenté le système de données ESA MMGIS et ont permis la réalisation d’une analyse collaborative : plus de 100 chercheurs volontaires ont parcouru la zone atterrissage durant l’été 2020 pour en annoter les caractéristiques.

Données d’élévation issues de CTX et HiRISE fournies par le groupe e-Planets dans le système de cartographie MMGIS de l’ESA pour la mission ExoMars.

La dernière étape n’était pas la moindre : regrouper, parfois arbitrer et réconcilier le travail du groupe de cartographie. Cette tâche a été confiée à Peter Fawdon (Open University, UK) et Csillia Orgel (ESA) dont la carte finale de géologie d’Oxia Planum a été publiée dans le volume 20 de la revue « Journal of Maps » (https://www.tandfonline.com/doi/full/10.1080/17445647.2024.2302361).

Carte des unités géologiques du site atterrissage ExoMars, Fawdon et al 2024

Cette cartographie synthétise l’état d’analyse de la zone d’investigations potentielle prévue pour le rover Rosalind Fanklin, telles que les données orbitales nous le permettent. Mais il s’agit également d’une occasion d’avoir les attentions de nombreux experts sur une zone spécifique, permettant de confronter et confirmer les méthodes et analyses de la surface martienne.

Il ne s’agit néanmoins pas de la fin des analyses de données orbitales de cette zones, car d’autres types de données (par exemple radar) ou méthodes d’analyses seront certainement utilisées d’ici le lancement de la mission!

Liens

PhD proposal: Ground penetrating radar data analysis along the martian dichotomy

Encadrants

Cathy Quantin-Nataf (Université Lyon1/France) and Alain Herique (Université Grenoble Alpes/France)

Context

The Martian missions have gradually revealed that Mars abounds with evidence of a full ancient hydrological system favorable to life emergence. If so, we can expect ancestral sedimentary deposits in basins or in the Martian lowlands. Recent advances in the analyses of the surface of Mars suggest that buried Noachian deposits may be ubiquitous and locally exhumed. Different dataset can be used to study buried layers including surficial data (optical or hyperspectral), but also orbital low frequency radar data from MARSIS/Mex and SHARAD/MRO. However, penetrating radar data are still little used for subsurface geological investigations while they are crucial complementary dataset to surface data. The main reason is that the surface clutter of the rough surface of Mars is creating many reflectors inducing an ambiguity in radargrams between deep reflectors of interest and slant surface reflectors arriving at the time. The deconvolution of the surface clutter is so crucial to interpret the data in terms of subsurface structures. The classical approach for such deconvolution is to use the global altimetry data set (200m/pix) (Nouvel et al 2003, Carter et al., 2009), but at this low spatial resolution, many clutters are missed. Optical DTMs provide better resolution. However, their use remains limited due to their coverage and the presence of artifacts (Desage et al., 2023).

The goal of this PhD project is to better use higher resolution terrain models (10m/pix) to simulate the surface clutter in the goal to highlight geological reflectors possibly linked to buried layers especially in the region of the Martian dichotomy (transition between Martian low and highlands) and to complementary analyze their 3D geological context.

Methodology and work program

SHARAD (Mars SHAllow RADar sounder, onboard Mars Reconnaissance Orbiter) ground penetrating radar has the ability to sound the first few hundred meters of the subsurface with a vertical resolution of 15m and a horizontal resolution of few hundred meters (Seu et al., 2007).

To better simulate the surface clutter and remove ambiguities, we need elevation data at higher spatial resolution but with a coverage large enough to cover around 50 km on both side of the radar track. CTX Digital Elevation Models (DEMs), obtained by stereo-photogrammetry of CTX images (Beyer et al., 2018; Michael C. Malin et al., 2007), are about 10m/pix and cover about 17% of the surface of Mars allowing in certain places mosaicking of DEMs larger than 100 km. For instance, such mosaic of CTX DEMs has been produced and used to characterize the landing site of ExoMars (Volat et al., 2023).

We have developed a new pipeline allowing the mosaicking CTX images around SHARAD track to simulate the surface clutter of the observed SHARAD data. The pipeline has been delivered but all the tests and use cases in different geological context still need to be done.

The familiarization with methods and pipeline is the first part of the PhD. Geophysical interpretations and/or automated data analysis methods will be developed by the second part. The study of Oxia Planum region will for instance contribute to the characterization of the ExoMars landing site while being a study case for the pipeline validation. Then, key locations of the surfaces of Mars along the Martian dichotomy will then be analyzed and interpreted.

Required skills

The subject is between physics and planetary geosciences. We expect candidate to have solid physical background and knowledge (or at least interest) in Geosciences. Experience with penetrating radar data is not mandatory but is an advantage.

Application

CV and Cover letter to be send to cathy.quantin@univ-lyon1.fr before April 15st 2024.

Bibliography

  • Carter, L. M., Campbell, B. A., Watters, T. R., Phillips, R. J., Putzig, N. E., Safaeinili, A., et al. (2009). Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199(2), 295–302. https://doi.org/10.1016/j.icarus.2008.10.007
  • Beyer, R. A., Alexandrov, O., & McMichael, S. (2018). The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science.
  • Malin, Michael C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., et al. (2007). Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research E: Planets, 112(5), 1–25. https://doi.org/10.1029/2006JE002808
  • Seu, R., Phillips, R. J., Biccari, D., Orosei, R., Masdea, A., Picardi, G., et al. (2007). SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research E: Planets. https://doi.org/10.1029/2006JE002745
  • Volat, M; Quantin-Nataf, C; Dehecq, Digital elevation model workflow improvements for the MarsSI platform and resulting orthorectified mosaic of Oxia Planum, the landing site of the ExoMars 2022 rover, PLANETARY AND SPACE SCIENCE, 10.1016/j.pss.2022.105552, 2022
  • Desage L., Herique A., Douté S., Zine S., Kofman W., Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models, Remote sensing, https://doi.org/10.3390/rs15030764, 2023