Ce projet est financé par le programme Horizon Europe de l’Union Européenne (Grant agreement ID: 101045260).
Contexte: la question de l’océan martien…
La vie est-elle unique à notre planète ? Telle est la grande question qui motive l’exploration de la planète Mars. L’eau liquide est indispensable au développement de la vie qui est apparue sur terre il y a plus de 3,5 milliards, très probablement dans les océans primitifs de notre planète. Les missions d’exploration martiennes ont révélé ces dernières décennies que Mars regorgeait de preuves d’un système hydrologique ancien favorable à l’émergence de la vie. Si tel est le cas, il y a tout lieu de penser que Mars a accueilli un océan hémisphérique couvrant les basses terres du nord. Cette hypothèse est aussi ancienne que l’exploration de Mars, mais a été mise à mal au cours des deux dernières décennies faute de preuves. La question de l’océan martien primitif reste l’un des problèmes les plus controversés et non résolus de l’analyse de la planète Mars.
Des découvertes récentes ré-ouvrent cette question montrant que si activité océanique il y a eu, elle est peut-être plus ancienne qu’on ne le pensait avec des dépôts qui ont été enfouis sous des roches plus jeunes mais qui sont aujourd’hui en cours d’exhumation (mis à l’affleurement par l’érosion). Aussi deux rovers (Mars2020/NASA arrivé en 2021 et ExoMars qui sera lancé en 2028) ont des sites d’atterrissage dans des terrains les plus anciens jamais explorés sur Mars, présentant des sédiments potentiellement liés à un système océanique global.
Objectifs d’OCEANID
Pour clore le débat, l’identification de dépôts de même âge, de même composition avec une répartition globale en accord avec un éventuel niveau océanique est nécessaire. Mais de tels indices sont des observations à petite échelle résolues uniquement par un ensemble de données orbitales à haute résolution (> 10 To de données) ou par une exploration in situ restreignant le lien direct avec le contexte global. OCEANID propose de relever ce défi en étudiant à différentes échelles : globale, mésoéchelle et microéchelle en utilisant des jeux de données complémentaires (données satellitaires, données des rovers explorateurs et données expérimentales). OCEANID s’appuiera également sur une méthodologie innovante de fouille de données orbitales : reconnaissance d’objets géologiques par intelligence artificielle, modèles d’évolution d’érosion/dépôt, imagerie du sous-sol par technique radar…
Les objectifs d’OCEANID sont de décrire les plus anciens dépôts sédimentaires martiens accumulés sous les niveaux océaniques possibles, d’établir une chronologie à petite échelle des événements primitifs et de contextualiser les missions Mars2020 et ExoMars au sein du système hydrologique global primitif.
Publications et Communications en Conférence internationnales (Mise à Jour : October 2025) :
Articles directly linked with ERC (ERC acknowledged) :
- Hurowitz, J.A., Tice, M.M., Allwood, A.C. et al. Redox-driven mineral and organic associations in Jezero Crater, Mars. Nature 645, 332–340 (2025). https://doi.org/10.1038/s41586-025-09413-0
- Nicholas J. Tosca et al. In situ evidence for serpentinization within the Máaz formation, Jezero crater, Mars.Sci. Adv.11,eadr8793(2025).DOI:10.1126/sciadv.adr8793
- Pineau M., Carter J., Lagain A., Ravier E., Mangold N., Le Deit L., Quantin-Nataf C., Zanella A. (2025) « Recent aqueous alteration associated to sedimentary volcanism on Mars », Nature Communications Earth & Environment, doi : 10.1038/s43247-025-02713-3.
- Millot, C., Quantin‐Nataf, C., Dehouck, E., Torres, I., & Volat, M. (2025). Depth to Diameter Relationships for< 50 m Diameter Martian Craters. Journal of Geophysical Research: Planets, 130(9), e2024JE008844. https://doi.org/10.1029/2024JE008844
-Articles linked with ERC :
- Royer, C ; Poulet, F ; Wiens, RC ; Montmessin, F ; Beck, P; Beyssac, O ; Clavé,É ; Dehouck, E ; Fouchet, T ; Johnson, JR ; Mandon, L ; Bernard, S ; Caravaca, G ; le Mouélic, S ; Pilorget, C ; Quantin-Nataf, C ; Maurice, S ; Cousin, A, The mineralogical composition of Jezero Crater Western Fan: Multigaussian modeling of Perseverance/SuperCam near-infrared observations and overview of major units , 2025 ICARUS, DOI: 10.1016/j.icarus.2025.116538
- Beck, P, Beyssac, O, Dehouck, E , Bernard, S , Pineau, M , Mandon, L , Royer, C , Clavé, E , Schröder, S , Forni, O, Francis, R , Mangold, N, Bedford, CC , Broz, AP , Cloutis, EA, Johnson, JR , Poulet, F , Fouchet, T , Quantin-Nataf, C , Pilorget, C , Rapin, W , Meslin, PY , Gabriel, TSJ , Arana, G , Madariaga, JM , Brown, AJ , Maurice, S , Clegg, SM , Gasnault, O , Cousin, A , Wiens, From hydrated silica to quartz: Potential hydrothermal precipitates found in Jezero crater, Mars, EARTH AND PLANETARY SCIENCE LETTERS, 2025, DOI 10.1016/j.epsl.2025.119256
- Fawdon, P ; Orgel, C; Adeli, S; Balme, M; Calef, FJ ; Davis, JM ; Frigeri, A ; Grindrod, P ; Hauber, E ; Le Deit, L ; Loizeau, D ; Nass, A ; Quantin-Nataf, C ; Sefton-Nash, E; Thomas, N; Torres, I; Vago, JL; Volat, M , De Witter, S et al., 2024, The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission, JOURNAL OF MAPS, DOI : 10.1080/17445647.2024.2302361
- Brighi, E ; Ciarletti, V ; Le Gall, A ; Plettemeier, D ; Herve, Y ; Oudart, N ; Quantin-Nataf, C ; Gilles, M ; de Lamberterie, FW ; 2024, Characterizing heterogeneities in the subsurface with an ultra-wideband GPR: Application to WISDOM, the GPR of the Rosalind Franklin ExoMars mission, PLANETARY AND SPACE SCIENCE, DOI 10.1016/j.pss.2024.106012
- Mishev, IG, Smith, IB, Quantin, C, Thollot, P, Putzig, NE, Viviano, C, Chojnacki, M, Campbell, B, Mapping of Western Valles Marineris Light-Toned Layered Deposits and Newly Classified Rim Deposits, JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2024, DOI 10.1029/2024JE008425
Communications in international Conferences:
- Torres I., Carter J., Quantin-Nataf C., Volat M., Loizeau D., Noachian Mars: Clay Continuity between Oxia Planum and Mawrth Vallis. Mars Through Time Conference (Paris, 2025), https://www-mars.lmd.jussieu.fr/mtt2025/abstracts/Torres.pdf (talk)
- Pineau M., Carter J., Lagain A., Ravier, E., Mangold N., Le Deit L., Quantin-Nataf C. & Zanella A. (2025), Recent aqueous alteration associated to sedimentary volcanism in Acidalia Planitia , Mars Through Time Conference, talk, (Paris, 2025)
- Quantin-Nataf C., Dehouck E. et al., What do the >3.8 Ga rocks studied so far at Jezero crater tell us about the past climate of Mars? , Mars Through Time Conference, talk, (Paris, 2025)
- Torres I., Carter J., Quantin-Nataf C., Volat M., Loizeau D., Noachian Mars phyllosilicates: unveiling the stratigraphy between Oxia Planum and Mawrth Vallis, BEACON 2025, Iceland, Poster.
- Millot, C., Quantin-Nataf, C., & Volat, M. (2025). Supervised Deep Learning for Mapping Small Craters on Mars (No. EPSC-DPS2025-1547), Sweden, Copernicus Meetings. (poster)
- Volat M., Quantin-Nataf C., Millot C., “HiRISE image colorization with a U-Net deep neural network”. EPSC-DPS2025-1547, Sweden, Sept. 2025.
- Barnes, R. et al., “Pre-impact stratigraphy exposed in the western Jezero crater rim”, in <i>EPSC-DPS Joint Meeting 2025 (EPSC-DPS2025</i>, 2025, Art. no. EPSC-DPS2025-1618. doi:10.5194/epsc-dps2025-1618.
- Debaille, V,et al. “Overview and Scientific Importance of the Samples Collected by the NASA Mars 2020 Perseverance Rover Mission”, in <i>87th Annual Meeting of the Meteoritical Society</i>, 2025, vol. 87, no. 3088, Art. no. 5223. doi:http://www.hou.usra.edu/meetings/metsoc2025/pdf/5223.pdf.
- Hurowitz, J. A. et al.., “The Detection of a Potential Biosignature by the Perseverance Rover on Mars”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 2581.
- Bedford, C. C. et al., “Geological Diversity in the Jezero Crater Rim Investigated with SuperCam: Insights into Impact Processes on Mars”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 2495.
- Zastrow, A. M. et al., “Mapping Mineralogy Along Perseverance’s Traverse Through a Neural Network Analysis of SuperCam Near-Infrared Spectra”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 2384.
- Quantin-Nataf, C., Dehouck et al. “Alteration Diversity Observed in the Inner Part of Jezero Crater Rim”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 2189.
- Deahn, M. C. et al., “Compositional Diversity of the Jezero Crater Rim and Links to Regional Units”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 1801.
- Gwizd, S. et al., “Orbital Perspectives on the Witch Hazel Hill Region of the Jezero Crater Rim: Evidence for Structural Deformation of Possible Noachian Basement Material”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 1760.
- Herd, C. D. K. et al., “The Samples Collected by the NASA Mars 2020 Perseverance Rover Mission: Enabling Decadal Science”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 1665.
- Udry, A. et al., “Igneous Compositions in the Rim of Jezero Crater Using SuperCam Data”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 1352.
- Beck, P. et al., “From Hydrated Silica to Quartz: Potential Hydrothermal Precipitates Found in Jezero Crater, Mars”, in <i>56th Lunar and Planetary Science Conference</i>, 2025, vol. 3090, Art. no. 1306.
- Caravaca, G., Dehouck, E., et al., (2025), The lacustrine history of Gale crater, Mars, Third Paleolimnology & Limnogeology International Symposium, France,
- Mangold N. et al., (2025), In-situ observations of deltaic sedimentary, rocks by the Perseverance rover at Jezero, crater, Mars, Third Paleolimnology & Limnogeology International Symposium, France,
- Millot, C., Quantin-Nataf, C., Dehouck, E., Volat, M., & Torres, I. (2024, September). Morphometric Laws for Small Martian Craters (D< 50 m): a Case Study on Landslide Deposits. In Europlanet Science Congress 2024 (pp. EPSC2024-844), Berlin, (talk)
- Millot, C., Quantin-Nataf, C., Dehouck, E., Volat, M., & Torres, I. (2024). Morphometric Laws for Small Martian Craters (D< 50 m): A Case Study Within Valles Marineris. Mars Conference 10th, USA, 3007, 3355. (poster)
- Volat M., Quantin-Nataf C., Mandon L., Torres I. , and C. Millot. MarsSI: Martian surface data processing service, Mars Conference 10th. USA,Poster session. July 2024.
- Volat M., Quantin-Nataf C., Mandon L., Torres I. , and C. Millot. MarsSI: Martian surface data processing service, EPSC2024-844), Berlin, (talk)
- Torres I., Carter J, Quantin-Nataf C., D. Loizeau, Dehouck E., Vollat M., Extent And Nature of Clay-rich Deposits, from Oxia Planum to Mawrth Vallis.Mars Conference 10th. USA,Poster session. July 2024.
- Torres I., Carter J, Quantin-Nataf C., D. Loizeau, Dehouck E., Vollat M., Extent And Nature of Clay-rich Deposits, from Oxia Planum to Mawrth Vallis, EPSC2024-844), Berlin, (talk)
- Pineau M., Carter J., Lagain A., Mangold N., Le Deit L., Quantin-Nataf C. (2024), Mineralogical Evidence of Sedimentary Volcanism for the Formation of the Thumbprint Terrains in Acidalia Planitia, Mars », EPSC 2024, Berlin (talk).
- Zastrow, A. M. et al., “Advanced Synthetic Data Augmentation and Neural Network-Based Spectral Unmixing of SuperCam Infrared Spectra”, vol. 2024, no. 2934, Art. no. P41E-2934, 2024.
- Wiens, R. C. et al., “SuperCam VISIR, Luminescence, and Raman Spectra, Imaging, and Elemental Compositions from Bright Angel, Neretva Vallis, an Ancient River Valley Near the Jezero Crater Rim”, vol. 2024, no. 3073, Art. no. P13B-3073, 2024.
- Quantin Nataf, C. et al , “First Science Results from the Mars 2020 Perseverance Rover Crater Rim Campaign and Implications for Mars Sample Return”, vol. 2024, Art. no. P01-01, 2024.
- Fawdon, P. et al, “Scientific hypotheses for the ExoMars Rosalind franklin rover mission: a geological history of Oxia Planum.”, Art. no. EPSC2024-1080, 2024. doi:10.5194/epsc2024-1080.
- Fawdon, P. et al, “The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission”, Art. no. EPSC2024-850, 2024. doi:10.5194/epsc2024-850.
- Clavé, E. et al,, “New constraints on the « Marginal Carbonates » from in situ observations with SuperCam, Mars2020”, Art. no. EPSC2024-255, 2024. doi:10.5194/epsc2024-255.
- Debaille, V. et al,, “Igneous Samples Collected by the M2020 Perseverance Rover for Mars Sample Return: Scientific Perspectives and Future Steps”, in <i>86th Annual Meeting of the Meteoritical Society Meeting</i>, 2024, vol. 86, no. 3036, Art. no. 6214.
- Mayhew, L. E., Quantin-Nataf et al., et al. “The Scientific Value of Collecting Samples from the Jezero Crater Rim”,Tenth International Conference on Mars, 2024, vol. 3007, Art. no. 3549.
- Zastrow, A. M. et al., “Neural Network-Based Spectral Unmixing of SuperCam Infrared Spectra”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3395.
- Quantin-Nataf, C. et al., “Orbital Infrared Spectroscopy: Lessons Learned from In Situ SCAM VISIR Spectrometer in Jezero”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3390.
- Dehouck, E., Quantin-Nataf et al., “Chemostratigraphy and Mineralogy of the Jezero Western Fan as Seen by the SuperCam Instrument: Evidence for a Complex Aqueous History and Variable Alteration Conditions”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3364.
- Fraeman, A. A., et al., “A Mars Science Helicopter Mission to Valles Marineris: Unlock Clues to Planetary Formation and Early Evolution”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3350.
- Pineau, M., Carter, J., Lagain, A., Mangold, N., Le Deit, L., and Quantin-Nataf, C., “Insight into the Subsurface Composition of the Thumbprint Terrains in Acidalia Planitia, Mars”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3185.
- Cousin, A et al., “The SuperCam Instrument Onboard Perseverance: Overview of Efforts Compiled for Mars X Conference”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3169.
- Clavé, E. et al., “Carbonation of Mafic Rocks in the Margin Unit, Jezero Crater, Mars”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3161.
- Deahn, M. C. et al., “Jezero Crater Rim from Orbit: Mapping Diverse Targets for the Mars 2020 Rover”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3151.
- Forni, O. et al., “Nickel-Copper Deposits on Mars: Origin and Formation”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3131.
- Poulet, F. et al., “Investigating the Modal Mineralogy of Olivine- and LCP-Rich Boulders Identified in Jezero Crater”, in <i>Tenth International Conference on Mars</i>, 2024, vol. 3007, Art. no. 3107.
- Mayhew, L. E., Quantin-Nataf C. et al., “The Scientific Significance of Potential Samples from the Jezero Crater Rim”, in <i>The Astrobiology Science Conference (AbSciCon) 2024</i>, 2024, Art. no. 305-03.
- Mayhew, L. E. , Quantin-Nataf C. et al, “The Scientific Value of Collecting Samples from the Jezero Crater Rim”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 2602.
- Ehlmann, B. L. et al., “Decadal Science from Mars Sample Return: The Importance of Sampling In-Place Nili Planum Noachian Strata Accessible Outside Jezero Crater for Priority Planetary Science Questions”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 2599.
- Zastrow, A. M et al.., “Neural Network-Based Spectral Unmixing of SuperCam Infrared Spectra”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 2375.
- Nachon, M. et al., “Light-Toned Veins and Material in Jezero Crater, Mars, as Seen In-Situ Via NASA’s Perseverance Rover (Mars 2020 Mission): Stratigraphic Distribution and Compositional Results”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 2349.
- Deahn, M. C. et al., “An Orbital Photogeologic Map of the Jezero Crater Rim: Diverse Targets for Mars 2020 Future Exploration”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 2302.
- Dehouck, E. et al., “Pristine Pyroxene-Bearing Boulders Analyzed by SuperCam in the Jezero Western Fan, Mars”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1967.
- Clavé, E. et al., “Diversity of Carbonates in Jezero Crater, Mars, as Seen with the SuperCam Instrument”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1829.
- Beyssac, O. et al., “What Are the Olivine-Rich Boulders in the Upper Fan and Margin Unit at Jezero Crater, Mars?”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1493.
- Royer, C. et al., “Mineral Composition of Jezero Crater Western Fan Derived by SuperCam/Mars2020 Infrared Spectroscopy and Spectral Modeling”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1370.
- Scheller, E. L. et al., “Key Perseverance Sampling Locations for the Ancient Martian Crust and Implications for Mars Science”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1336.
- Beck, P. et al., “SuperCam Detections of Hydrated-Silica in the Jezero Crater”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1304.
- Forni, O. et al., “Nickel-Copper Deposits on Mars? Discovery of Ore-Grade Abundances, and Implications on Formation and Alteration”, in <i>55th Lunar and Planetary Science Conference</i>, 2024, vol. 3040, Art. no. 1236.
- Zastrow, A. M. et al., “Applying a Lab-Based Neural Network Unmixing Model to SuperCam VISIR Spectra through Transfer Learning and Data Augmentation”, vol. 2023, no. 2716, Art. no. P51D-2716, 2023.


