Démarrage du projet « OCEANID »: à la recherche de l’océan martien

Le projet OCEANID démarre au sein du groupe e-Planets, pour 5 ans!

Ce projet est financé par le programme Horizon Europe de l’Union Européenne (Grant agreement ID: 101045260).

Contexte: la question de l’océan martien…

La vie est-elle unique à notre planète ? Telle est la grande question qui motive l’exploration de la planète Mars. L’eau liquide est indispensable au développement de la vie qui est apparue sur terre il y a plus de 3,5 milliards, très probablement dans les océans primitifs de notre planète. Les missions d’exploration martiennes ont révélé ces dernières décennies que Mars regorgeait de preuves d’un système hydrologique ancien favorable à l’émergence de la vie. Si tel est le cas, il y a tout lieu de penser que Mars a accueilli un océan hémisphérique couvrant les basses terres du nord. Cette hypothèse est aussi ancienne que l’exploration de Mars, mais a été mise à mal au cours des deux dernières décennies faute de preuves. La question de l’océan martien primitif reste l’un des problèmes les plus controversés et non résolus de l’analyse de la planète Mars.

Vue d’artiste de Mars avec un océan basée sur les informations géologiques disponibles (source: wikimedia)

Des découvertes récentes ré-ouvrent cette question montrant que si activité océanique il y a eu, elle est peut-être plus ancienne qu’on ne le pensait avec des dépôts qui ont été enfouis sous des roches plus jeunes mais qui sont aujourd’hui en cours d’exhumation (mis à l’affleurement par l’érosion). Aussi deux rovers (Mars2020/NASA arrivé en 2021 et ExoMars qui sera lancé en 2028) ont des sites d’atterrissage dans des terrains les plus anciens jamais explorés sur Mars, présentant des sédiments potentiellement liés à un système océanique global.

Objectifs d’OCEANID

Pour clore le débat, l’identification de dépôts de même âge, de même composition avec une répartition globale en accord avec un éventuel niveau océanique est nécessaire. Mais de tels indices sont des observations à petite échelle résolues uniquement par un ensemble de données orbitales à haute résolution (> 10 To de données) ou par une exploration in situ restreignant le lien direct avec le contexte global. OCEANID propose de relever ce défi en étudiant à différentes échelles : globale, mésoéchelle et microéchelle en utilisant des jeux de données complémentaires (données satellitaires, données des rovers explorateurs et données expérimentales). OCEANID s’appuiera également sur une méthodologie innovante de fouille de données orbitales : reconnaissance d’objets géologiques par intelligence artificielle, modèles d’évolution d’érosion/dépôt, imagerie du sous-sol par technique radar…

Les objectifs d’OCEANID sont de décrire les plus anciens dépôts sédimentaires martiens accumulés sous les niveaux océaniques possibles, d’établir une chronologie à petite échelle des événements primitifs et de contextualiser les missions Mars2020 et ExoMars au sein du système hydrologique global primitif.

Conclusion

De nouveaux membres (étudiants de thèses, post-doc) nous rejoindrons bientôt sur ce projet et et nous partagerons les résultats au fur et à mesure de notre progression sur ce sujet!

Liens

Perseverance est en route pour Mars !

Le rover Perseverance de la NASA a décollé jeudi 30 juillet de Cap Canaveral, en Floride, au sommet d’un lanceur Atlas 5. Même si nous n’avons pas pu assister à l’événement sur place comme cela était prévu pour plusieurs d’entre nous, nous avons pu le suivre sur Internet et nous nous réjouissons évidemment que tout se soit bien passé !

À l’occasion de cet événement, l’équipe e-Planets a fait quelques apparitions dans les médias. Retrouvez ci-dessous l’intervention de Cathy dans le direct du CNES :

De son côté, Erwin a répondu aux questions de Clubic (lien vers l’article), et a participé à un autre direct sur YouTube :

Le rover, blotti dans sa capsule protectrice et attaché à son module de croisière, a désormais devant lui un voyage interplanétaire de près de sept mois. Vous pouvez suivre sa position dans le système solaire en temps réel ici. Rendez-vous le 18 février 2021 pour l’atterrissage dans le cratère Jezero !

Du nouveau sur Mars : l’équipe e-Planets vous emmène découvrir le site d’atterrissage du rover Perseverance

Pour la première fois dans l’histoire de l’exploration martienne, une agence spatiale, la NASA, envoie un robot explorer les terrains les plus anciens et mystérieux de Mars : une ère que les scientifiques nomment le Noachien, soit il y a environ 4 milliards d’années. Si cette époque est encore peu comprise, les terrains qui s’y sont formés sont marqués par des traces d’activité hydrologique abondante. De plus, c’est à cette époque que la vie apparaît sur Terre, ce qui laisse espérer bon nombre de scientifiques la découverte de potentielles traces de vie ancienne sur des terrains martiens d’âge noachien.

Le site choisi pour l’atterrissage du rover Perseverance (mission Mars 2020) est le cratère d’impact Jezero, ou « lac » en slovène, dont le nom n’a pas été choisi au hasard. En effet, de nombreux indices laissent à penser que ce cratère large d’environ 50 km a un jour été un lac, à une époque où l’eau liquide était stable à la surface de Mars. Jezero possède un delta, connecté à un vaste réseau d’anciennes rivières ayant drainé une des régions de Mars apparaissant la plus riche d’un point de vue minéralogique : la région de Nili Fossae.

En plus de ses terrains à haut potentiel exobiologique, le site d’atterrissage du cratère Jezero expose des roches ayant préservé le passé volcanique intense de Mars au Noachien. Lucia, appuyée de Cathy, Patrick, Loïc, Gilles, Erwin, Sylvain, Cédric et Matthieu, a cette année publié une étude sur ces terrains volcaniques peu communs, riches en olivine et carbonates, dont les résultats ont été repris dans un communiqué de presse de l’ESA, l’agence spatiale européenne.

Les terrains riches en olivine et carbonates apparaissent bleus sur cette vue 3D en fausses couleurs. © NASA/JPL/Université d’Arizona ; traitement de l’image : L. Mandon

L’équipe révèle ainsi que ces terrains formés il y a environ 3,8 milliards d’années résultent le plus probablement d’éruptions volcaniques explosives particulièrement intenses, ayant recouvert la région sous des milliers de kilomètres carrés de cendres et autres dépôts pyroclastiques. Ces terrains font partie des roches qui seront échantillonnées en priorité dans l’optique d’un retour d’échantillons sur Terre. Des analyses poussées en laboratoire permettraient ainsi une comparaison directe entre l’âge de formation estimée depuis l’orbite et l’âge véritable de ces roches, calibrant ainsi la chronologie martienne.

De nombreux membres de l’équipe sont impliqués de près ou de loin dans cette mission, qui nous en sommes sûrs, permettra de lever le voile sur un certain nombre d’incertitudes quant à notre connaissance de l’histoire de Mars, mais qui pourrait également se révéler riche en rebondissements… Affaire à suivre de près !

InSight à la Sorbonne !

Cette semaine, l’équipe de la mission InSight est réunie à Paris, dans ce magnifique grand amphithéâtre de la Sorbonne, pour discuter des fabuleux résultats de cette mission. Lu Pan et Chloe Michaut y donnent une présentation respectivement sur la structure des dix premiers kilomètres de la croûte martienne et sur les modèles de la lithosphère martienne. C’est un bel accomplissement pour Lu Pan qui est venue rejoindre l’équipe e-planets avec un financement européen ‘’ Marie Curie’’ pour préparer cette mission InSight en analysant la sous-surface de Mars dans la région où le sismomètre s’est posé. Après deux ans de travail, les résultats de Lu montrent que la sous-surface est complexe et probablement faite de plusieurs niveaux différents. Ce sont des contraintes majeures pour comprendre la propagation des ondes sismiques. Justement, plusieurs ‘’tremblements’’ ont été enregistrés (cf communiqué de Presse) inaugurant une toute nouvelle discipline scientifique : la sismologie Martienne. Mars n’est définitivement pas une planète morte !

InSight s’est posée sur Mars !

Ouf ! L’atterrissage de la sonde américaine InSight, dont nous vous parlions il y a quelques jours, s’est bien passé ! L’étape la plus délicate de la mission est donc derrière nous, même s’il faudra encore un peu de patience pour le démarrage de la science proprement dite, car il reste à déployer les instruments sur le sol martien et à s’assurer de leur bon fonctionnement.

L’événement a été suivi par un public nombreux partout en France et a été l’occasion pour plusieurs membres de l’équipe e-Planets de faire des apparitions à la télévision ou sur Internet. Vous trouverez les liens vers les vidéos correspondantes ci-dessous. Bon visionnage !

Lu a été interviewée par Euronews :

L’intervention de Lu démarre à 0:49.
[English version here]

Chloé et Cathy ont participé à la soirée organisée par la Cité des Sciences et de l’Industrie, à Paris, qui était retransmise en direct sur YouTube :

L’intervention de Chloé démarre à 1:23:20 et celle de Cathy à 1:33:20.

Enfin, Erwin a participé à une autre émission en direct sur YouTube, diffusée depuis le Centre Spatial de Toulouse :

L’intervention d’Erwin démarre à 11:15.

Arrivée imminente de la sonde InSight

Après plus de six mois dans l’espace, la sonde américaine InSight est bientôt arrivée au bout de son périple : ce lundi 26 novembre, dans la soirée (en heure française), elle atterrira à la surface de Mars, dans la région d’Elysium Planitia. Pour cela, il lui faudra traverser l’atmosphère de la planète et passer d’une vitesse de 20 000 km/h à moins de 10 km/h, afin de se poser sans casse, le tout en six minutes et 45 secondes ! Même si la Nasa a déjà réussi cette prouesse plusieurs fois dans le passé, cela reste un moment critique, communément surnommé les « sept minutes de terreur ».

Contrairement au rover Curiosity, qui a parcouru plus de vingt kilomètres depuis son arrivée en 2012, la sonde InSight n’est pas dotée de roues : elle restera donc sur place. Pourquoi ? Simplement car sa mission est très différente de celle de Curiosity : alors que ce dernier s’intéresse aux roches situées en surface, ainsi qu’à l’atmosphère, InSight va étudier l’intérieur de Mars. L’instrument phare de la mission est d’ailleurs le sismomètre SEIS, fourni le CNES. Celui-ci va enregistrer les ondes sismiques générées par les « craquements » de la croûte martienne ainsi que par les impacts de météorites, afin de déterminer la structure profonde de la planète, y compris la taille de son noyau. Ainsi, on comprend mieux pourquoi InSight n’a pas besoin de se déplacer pour collecter des données : ce sont les données qui vont venir à elle !

Plusieurs membres de l’équipe e-Planets — Chloé Michaut, Benoit Tauzin, Lu Pan et Cathy Quantin — sont directement impliqués dans la mission. Leur projet de recherche s’intéresse en particulier à l’origine ce que l’on appelle la dichotomie martienne, c’est-à-dire la différence d’altitude très marquée (six kilomètres !) entre les plaines du Nord et les plateaux du Sud. Pour comprendre l’origine de cette caractéristique mystérieuse, Chloé et Benoit souhaitent détecter des discontinuités sismiques (interfaces au niveau desquelles la vitesse de propagation des ondes change brutalement), en particulier l’équivalent martien du « Moho », la discontinuité qui marque la base de la croûte et le sommet du manteau. Pour cela, ils s’appuieront sur des techniques modernes d’analyse de données, exploitant la réflexion et la conversion des ondes sismiques sur ces discontinuités, ainsi que sur des modèles d’évolution thermique de la croûte. De leur côté, Lu et Cathy étudient à l’aide de données orbitales la composition des pics centraux des cratères de la région d’Elysium, afin de déterminer la structure superficielle de la croûte sous le site d’atterrissage d’InSight. Ces contraintes géologiques serviront d’informations a priori lors de l’inversion des signaux sismiques.

À noter que dans le cadre de cette étude, Lu a eu l’opportunité de donner un nom à l’un de ces cratères, et ce nom a été récemment approuvé par l’Union Astronomique Internationale ! Les détails dans cet autre billet.

Pour l’atterrissage lui-même, l’équipe sera également au rendez-vous, puisque Chloé et Cathy interviendront à la Cité des Sciences, à Paris, durant un grand événement ouvert au public. Erwin, de son côté, sera au Centre Spatial de Toulouse pour participer à une émission en direct sur YouTube.

Vue d’artiste de l’atterrissage de la sonde InSight sur Mars. (NASA/JPL-Caltech)

Nouveau nom pour un cratère d’impact sur Mars ! // New name for an impact crater on Mars!

***See English version below***

Rien de plus naturel que de nommer les choses que nous voyons. Par exemple, nous nommons nos chats, chiens, rues, bâtiments, villes… Nous nommons aussi les planètes, étoiles, montagnes, rivières, etc. Pour des objets géologiques sur les autres planètes qui sont en cours d’exploration, nous avons sans cesse besoin de nouveaux noms. Le groupe de travail pour la nomenclature des systèmes planétaires de l’Union Astronomique Internationale (UAI) est l’organisation qui décide des règles pour nommer les objets sur les autres planètes. Par exemple, pour nommer un cratère sur la Lune, il faut choisir un nom de grand scientifique ou explorateur décédé. Pour nommer un objet sur Venus, on peut choisir le nom d’une déesse ou d’une femme célèbre. Sur Mars, les cratères de plus de 60 kilomètres sont nommés d’après des scientifiques ou des auteurs, et les cratères de moins de 60 kilomètres sont nommés d’après un village ou une petite ville avec une population de moins de 100 000 habitants.

Nous avons longuement étudié un cratère de 50 km dans la région du site d’atterrissage de la sonde InSight. Ce cratère a exposé des matériaux profonds de minéralogie et de morphologie variées. Plusieurs études qui ont remarqué ce cratère le mentionnent comme le cratère « sans nom ». Nous avons donc pensé qu’il était important de lui trouver un nom ! Selon les règles de l’UAI, nous pouvons proposer un nom, puis c’est au groupe de travail de l’approuver au non, parce qu’ils veulent s’assurer que toutes les régions du monde soient bien représentées. Le nom que j’ai choisi est « Kalpin », qui est une petite ville dans la province de Xinjiang en Chine. C’est là où j’ai mené mon projet de recherche durant mes premières années à l’université (j’ai étudié une couche de lapilli dans les dépôts volcaniques du bassin de Tarim). Kalpin est située à côté du bassin de Tarim, qui abrite le désert du Taklamakan. La région est réputée pour ses nans, ses kebabs d’agneau et ses pastèques. —Délicieux ! 😛

Carte de la ville de Kalpin, province de Xinjiang, en Chine. (Crédit : Google Earth)

Pour notre plus grand plaisir, l’UAI a accepté le nom et l’a annoncé officiellement le 15 novembre. Vous pouvez trouver l’annonce ici :
https://astrogeology.usgs.gov/news/nomenclature/name-approved-for-feature-on-mars-kalpin

Voilà donc le cratère Kalpin sur Mars ! Les coordonnées du centre sont (Latitude : 8.93 °; Longitude : 141.27 °). Vous trouverez ci-dessous les images de ce cratère dans l’infrarouge thermique, de jour et de nuit.

Lu Pan

Images infrarouges de jour et nuit du cratère Kalpin, sur Mars (instrument THEMIS).
L’image de jour montre l’albédo des matériaux dans l’infrarouge, tandis que l’image de nuit est liée à leurs propriétés physiques et thermiques (roches vs sable vs poussière).

***ENGLISH VERSION***

It is simply natural to give names to refer to the things that we see. We give names to cats, dogs, street, buildings, and cities. We also name our planets, stars, mountains, rivers, etc. For features on other planets that we are currently exploring, we need to come up with new names all the time. The International Astronomical Union (IAU) Working Group for Planetary System Nomenclature has taken the responsibility and made up rules on how we should name different objects on planets. For example, to name a crater on the Moon, you pick a name of great deceased scientists and polar explorers. To name a feature on Venus, you find names of goddesses and heroines. Any crater larger than 60 km on Mars is named after a deceased scientist or writer, whereas craters smaller than 60 km gets a name from a village or town with a population less than 100,000.

We’ve been looking at a 50-km crater for some time for our study in the region of InSight landing site. This crater exposes materials of different mineralogy and morphology from the subsurface and has already been mentioned in several other studies, always referred to as an “unnamed crater”. Thus, we find it is important to give it a name! According to IAU rules, we can propose a name and then the working group on nomenclature will see if they approve it or not, making sure different places on Earth are well-represented in the naming system. The name I chose is from a small town called Kalpin in Xinjiang province where I did my undergraduate research (I was studying a layer of accretionary lapilli of the volcanic deposits in the Tarim basin). Kalpin is a very small town near Tarim basin, the home to the famous Taklamakan Desert. There they are famous for their nans, lamb kebabs and watermelons! —-Delicious! :P.

Map of the town of Kalpin in Xinjiang province, China. (credit: Google Earth)

Fortunately, the IAU accepted the name and announced it on November 15. You can find the information here: https://astrogeology.usgs.gov/news/nomenclature/name-approved-for-feature-on-mars-kalpin

So now I give you the newly named Kalpin crater on Mars! The center coordinates are (Latitude: 8.93 °, Longitude: 141.27 °). Below are the infrared images of this crater in day-time and night-time data.

Lu Pan

THEMIS day-time and night-time image of Kalpin crater on Mars. The day-time infrared shows the albedo of the feature in the infrared, while the night-time image is related to the thermal physical property of the materials (rocks vs sand vs dust). 

Oxia planum est le site recommandé pour l’atterrissage du rover ExoMars

Les 8 et 9 novembre 2018 s’est tenue la 5ième conférence du groupe de travail des sites d’atterrissage pour la mission ExoMars 2020 à Leicester, au Royaume Uni. Au cours de cette réunion, la communauté d’ingénieurs et de scientifiques présents ont voté une recommandation pour atterrir sur Oxia Planum, site découvert par l’équipe e-Planets conjointement avec l’IAS (Institut d’Astrophysique Spatiale) de Paris.

La mission ExoMars, portée par l’ESA (l’Agence Spatiale Européenne) et Roscosmos (l’agence spatiale russe), verra l’envoi en 2020 d’un rover sur le sol martien. La sélection du site d’atterrissage est un processus assez long, au cours duquel plusieurs sites ont été proposés avant de procéder à des choix basés sur divers critères techniques et scientifiques. En 2015, Oxia Planum avait déjà été choisi comme site d’atterrissage, mais le retard de 2 ans de la mission a vu la ré-ouverture des sites à la sélection.

Pour ce congrès, seuls restaient en course les sites d’Oxia Planum, soutenu par une équipe internationale dirigée par e-Planets et John Carter (IAS), et Mawrth Vallis, soutenu par une équipe international dirigée par l’Institut d’Astrophysique Spatiale (IAS). Du groupe lyonnais e-Planets, Cathy Quantin-Nataf, Lucia Mandon et Lu Pan ont présenté les travaux de toute l’équipe sur le site d’Oxia Planum. Les deux sites, âgés de plusieurs milliards d’années (> 3,9 Ga), offrent une chance unique d’étudier l’histoire ancienne de Mars, et de remonter dans le temps où la planète était potentiellement habitable par la Vie.

Les sites d’Oxia Planum et Mawrth Vallis, très proches, sont localisés en bordure du bassin de Chryse Planitia, au niveau de très anciens (> 3,9 Ga) dépôts, potentiellement sédimentaires riches en argiles. (c) image : ESA

Pendant plus d’une heure, Cathy a pu présenter le site sous toutes ses coutures : sa géologie, son histoire (intimement reliée à la présence d’eau liquide), l’accessibilité des différentes unités… Mais également les nombreux exercices de simulation d’atterrissage réalisés par l’équipe (voir notre note de blog ici).

Cathy Quantin-Nataf, professeur au LGL

Lucia a présenté la minéralogie du site en détails, fruit du travail de l’équipe pendant plusieurs années grâce aux instruments HiRISE et CRISM, orbitant autour de Mars à bord de la sonde Mars Reconnaissance Orbiter.

Lu, quant à elle, a présenté ses travaux sur les phases ferriques présentes sur le site.

Les différentes équipes d’ingénierie de la mission étaient également représentées, et ont pu exposer leurs rapports concernant les risques (atterrissage et traficabilité) associés aux deux sites.

Le prototype « Bruno » du rover, présenté par Thalès

A la suite de nombreuses discussions, les membres présents ont été conviés à voter pour former une recommandation sur le site préférable. Le consensus, représentant l’avis des scientifiques et ingénieurs, a été que le site de Mawrth Valis et d’Oxia Planum présentaient tous les deux des opportunités pour la recherche de précurseurs de la vie. Cependant, les caractéristiques du module d’atterrissage et du rover rendent l’atterrissage, mais également l’exploration (traficabilité) de Mawrth Vallis sensiblement plus risqués. En conséquences, la communauté a recommandé le site d’Oxia Planum.

Cette recommandation sera prise en compte par le projet pour l’annonce du choix final du site d’atterrissage, courant 2019. Toute l’équipe est néanmoins très fière d’avoir pu contribuer à ce projet !


Mars sous toutes ses coutures à Berlin :

Clément et Sylvain se sont rendus à l’EPSC (European Planetary Science Congress) à Berlin pour présenter les derniers résultats de leur travail de thèse. Ces deux doctorants ont tout les deux parlé de Mars et de son histoire.
Dans un poster Clément a expliqué comment il a réussi a estimer le volume de lave émis par la province volcanique de Tharsis : le plus gros volcan du système solaire. Pour réaliser cela il a du estimer à quel point le volcan a plié la croute martienne en regardant le materiel exhumé par les très gros cratères de météorite tout autour de Tharsis.
Justement, c’est de cratères de météorites dont Sylvain a discuté au cours d’une présentation orale. En travaillant sur les cratères formés par les éjectas d’autres cratères il a découvert que à partir d’une certaine distance du premier cratère, certains des cratères secondaires formaient eux même d’autres cratères (cela fait beaucoup de cratères dans une seule phrase).
C’est fatigués, mais content de leur travail que Clément et Sylvain sont rentrés à Lyon.

Exomars a atterri sur Mars !

 

Virtuellement….Cette semaine, nous avons fait une simulation d’atterrissage du rover Exomars sur le site d’atterrissage que notre équipe e-planet propose : Oxia Planum. En collaboration avec des planétologues britanniques, nous (Lucia et Cathy) nous sommes entrainés à l’arrivée du rover Exomars. En début de semaine, nous avons découvert le site exact pour nous mettre dans des conditions inconnues.  Nous avions comme objectif de  1) cartographier 1 kilomètre à la ronde autour du site  les zones dangereuses pour la traficabilité du rover et  les zones à analyser en priorité pour remplir les objectifs scientifiques de la mission et 2) décider en fin de semaine la route à suivre pour les 90 premiers jours de la mission ainsi que la route et les objectifs à long terme. L’image jointe montre une vue du site sur lequel nous avons travaillé cette semaine en 3D. Les couleurs représentent les minéraux argileux. Les argiles sont des minéraux formés par action de l’eau qui sont la cible principale de ce site. Les roches présentant ces minéraux argileux pourraient avoir préservé des traces de vie potentielles.  Cet exercice nous aura permis de travailler en équipe internationale, de tester des outils de travail collaboratifs internationaux et tester notre capacité à prévoir une route pour le rover en moins d’une semaine : objectif atteint ! Vivement le vrai atterrissage!